Survival probability of the branching random walk killed below a linear boundary

نویسندگان

  • Jean Bérard
  • Jean-Baptiste Gouéré
چکیده

We give an alternative proof of a result by N. Gantert, Y. Hu and Z. Shi on the asymptotic behavior of the survival probability of the branching random walk killed below a linear boundary, in the special case of deterministic binary branching and bounded random walk steps. Connections with the Brunet-Derrida theory of stochastic fronts are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotics for the survival probability in a killed branching random walk

Consider a discrete-time one-dimensional supercritical branching random walk. We study the probability that there exists an infinite ray in the branching random walk that always lies above the line of slope γ − ε, where γ denotes the asymptotic speed of the right-most position in the branching random walk. Under mild general assumptions upon the distribution of the branching random walk, we pro...

متن کامل

Martingale ratio convergence in the branching random walk

We consider the boundary case in a one-dimensional supercritical branching random walk, and study two of the most important martingales: the additive martingale (Wn) and the derivative martingale (Dn). It is known that upon the system’s survival, Dn has a positive almost sure limit (Biggins and Kyprianou [9]), whereas Wn converges almost surely to 0 (Lyons [22]). Our main result says that after...

متن کامل

A branching random walk among disasters

We consider a branching random walk in a random space-time environment of disasters where each particle is killed when meeting a disaster. This extends the model of the “random walk in a disastrous random environment” introduced by [15]. We obtain a criterion for positive survival probability, see Theorem 1.1. The proofs for the subcritical and the supercritical cases follow standard arguments,...

متن کامل

Central Limit Theorem in Multitype Branching Random Walk

A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.

متن کامل

Anisotropic Branching Random Walks on Homogeneous Trees

Symmetric branching random walk on a homogeneous tree exhibits a weak survival phase: For parameter values in a certain interval, the population survives forever with positive probability, but, with probability one, eventually vacates every finite subset of the tree. In this phase, particle trails must converge to the geometric boundary of the tree. The random subset 3 of the boundary consisti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011